Transition in the fractal properties from diffusion-limited aggregation to Laplacian growth via their generalization.

نویسندگان

  • H George E Hentschel
  • Anders Levermann
  • Itamar Procaccia
چکیده

We study the fractal and multifractal properties (i.e., the generalized dimensions of the harmonic measure) of a two-parameter family of growth patterns that result from a growth model that interpolates between diffusion-limited aggregation (DLA) and Laplacian growth patterns in two dimensions. The two parameters are beta that determines the size of particles accreted to the interface, and C that measures the degree of coverage of the interface by each layer accreted to the growth pattern at every growth step. DLA and Laplacian growth are obtained at beta=0, C=0 and beta=2, C=1, respectively. The main purpose of this paper is to show that there exists a line in the beta-C phase diagram that separates fractal (D<2) from nonfractal (D=2) growth patterns. Moreover, Laplacian growth is argued to lie in the nonfractal part of the phase diagram. Some of our arguments are not rigorous, but together with the numerics they indicate this result rather strongly. We first consider the family of models obtained for beta=0, C>0, and derive for them a scaling relation D=2D(3). We then propose that this family has growth patterns for which D=2 for some C>C(cr), where C(cr) may be zero. Next we consider the whole beta-C phase diagram and define a line that separates two-dimensional growth patterns from fractal patterns with D<2. We explain that Laplacian growth lies in the region belonging to two-dimensional growth patterns, motivating the main conjecture of this paper, i.e., that Laplacian growth patterns are two dimensional. The meaning of this result is that the branches of Laplacian growth patterns have finite (and growing) area on scales much larger than any ultraviolet cutoff length.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laplacian growth and diffusion limited aggregation: different universality classes.

It had been conjectured that diffusion limited aggregates and Laplacian growth patterns (with small surface tension) are in the same universality class. Using iterated conformal maps we construct a one-parameter family of fractal growth patterns with a continuously varying fractal dimension. This family can be used to bound the dimension of Laplacian growth patterns from below. The bound value ...

متن کامل

Dynamics of conformal maps for a class of non-Laplacian growth phenomena.

Time-dependent conformal maps are used to model a class of growth phenomena limited by coupled non-Laplacian transport processes, such as nonlinear diffusion, advection, and electromigration. Both continuous and stochastic dynamics are described by generalizing conformal-mapping techniques for viscous fingering and diffusion-limited aggregation, respectively. The theory is applied to simulation...

متن کامل

Laplacian Fractal Growth in Media with Quenched Disorder

We analyze the combined effect of a Laplacian field and quenched disorder for the generation of fractal structures with a study, both numerical and theoretical, of the quenched dielectric breakdown model (QDBM). The growth dynamics is shown to evolve from the avalanches of invasion percolation (IP) to the smooth growth of Laplacian fractals, i. e. diffusion limited aggregation (DLA) and the die...

متن کامل

Discrete Laplacian Growth: Linear Stability vs Fractal Formation

We introduce stochastic Discrete Laplacian Growth and consider its deterministic continuous version. These are reminiscent respectively to well-known Diffusion Limited Aggregation and Hele-Shaw free boundary problem for the interface propagation. We study correlation between stability of deterministic free-boundary problem and macroscopic fractal growth in the corresponding discrete problem. It...

متن کامل

Transport-limited aggregation.

Diffusion-limited aggregation (DLA) and its variants provide the simplest models of fractal patterns, such as colloidal clusters, electrodeposits, and lightning strikes. The original model involves random walkers sticking to a growing cluster, but recently DLA (in the plane) has been reformulated in terms of stochastic conformal maps. This fruitful new perspective provides the exact Laplacian c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 66 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2002